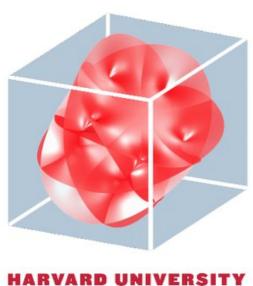
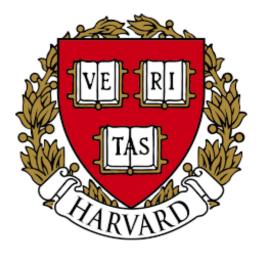
Holography and the KKLT Scenario

Max Wiesner Center of Mathematical Sciences and Applications Harvard University



CENTER OF MATHEMATICAL SCIENCES AND APPLICATIONS based on:

S. Lüst, C. Vafa, MW, K. Xu [2204.07171]



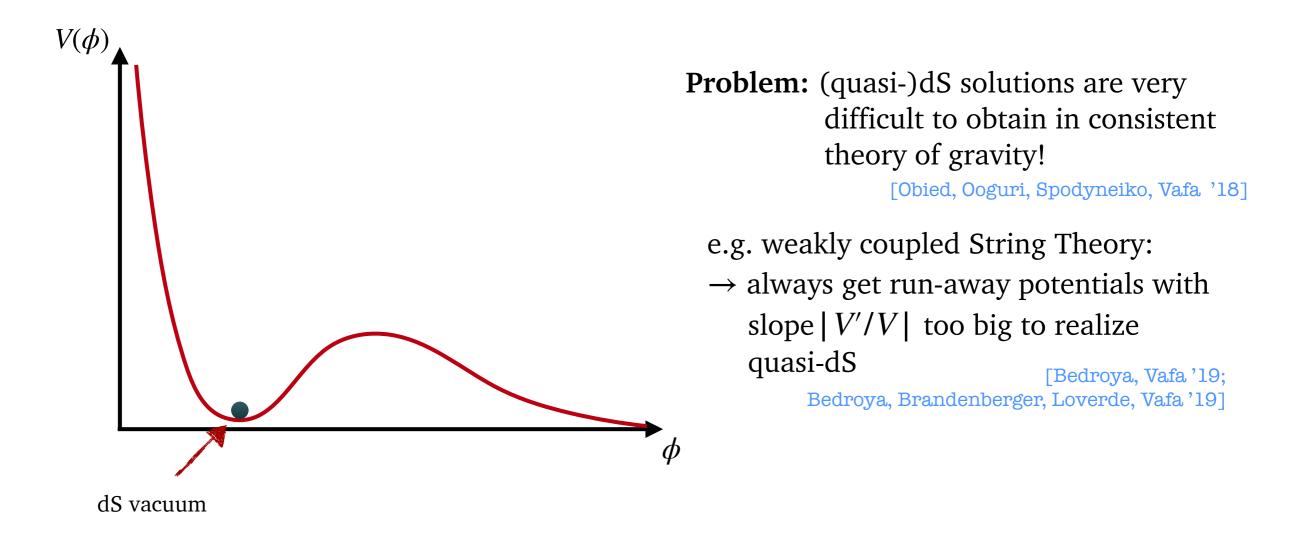
String Pheno 2022 July 5, 2022

Introduction

At large scales, our Universe seems to be homogeneous and with small, but positive, cosmological constant: $\Lambda>0$

 \rightarrow should be describable by a quasi-de Sitter geometry.

 \rightarrow look for models that allow for vacua with positive cosmological constant.



Aim: Find dS not in strict weak coupling, but still controllable regime! \rightarrow asymptotic arguments for shape of potential do not apply!

- Consider type IIB on Calabi-Yau orientifold X_3/\mathbb{Z}_2 in presence of RR/NS-three form
- Tadpole cancellation requires: $\frac{\chi(X_4)}{24} = N_{D3} + \frac{1}{2} \left[F_3 \wedge H_3 \right]$

- Scalar potential given by: $V = e^{K} \left(g^{a\bar{b}} D_{a} W \bar{D}_{\bar{b}} \bar{W} 3 |W|^{2} \right)$
- Supersymmetric vacuum corresponds to solutions to $D_a W = 0$

$$W = \int \Omega_3 \wedge (F_3 - \tau H_3) + \sum_{\mathbf{k}} \mathscr{A}_{\mathbf{k}}(z^i, F_3, H_3) e^{-2\pi k^{\alpha} T_{\alpha}}$$

Kähler moduli
Potential at the minimum $V_0 = -3 \left(e^K |W|^2 \right)$

Max Wiesner

Holography and the KKLT Scenario

Aim: Find dS not in strict weak coupling, but still controllable regime! \rightarrow asymptotic arguments for shape of potential do not apply!

Example: KKLT scenario (*Get dS through uplift of supersymmetric AdS vacuum*) [Kachru, Kallosh, Linde, Trivedi '03]

- Consider type IIB on Calabi-Yau orientifold X_3/\mathbb{Z}_2 in presence of RR/NS-three form flux F_3, H_3 .
- Tadpole cancellation requires: $\frac{\chi(X_4)}{24} = N_{D3} + \frac{1}{2} \left[F_3 \wedge H_3 \right]$

$$\frac{\chi(X_4)}{24} = \frac{1}{4} \left(N_{O3} + \chi(O7) \right)$$

- Scalar potential given by: $V = e^{K} \left(g^{a\bar{b}} D_{a} W \bar{D}_{\bar{b}} \bar{W} 3 |W|^{2} \right)$
- Supersymmetric vacuum corresponds to solutions to $D_a W = 0$

$$W = \int \Omega_3 \wedge (F_3 - \tau H_3) + \sum_{\mathbf{k}} \mathscr{A}_{\mathbf{k}}(z^i, F_3, H_3) e^{-2\pi k^{\alpha} T_{\alpha}} \xrightarrow{\text{For } p}_{\Rightarrow S}$$

Kähler moduli
Complex structure
moduli
Potential at the minimum
given by:

$$V_0 = -3 \left(e^K |W|^2 \right)$$

For perturbative control:
$$e^{-2\pi i r_a} \ll 1$$

 $\rightarrow Solving D_a W = 0$ also requires
 $\int \Omega \wedge (F_3 - \tau H_3) \ll 1$

Max Wiesner

Holography and the KKLT Scenario

Aim: Find dS not in strict weak coupling, but still controllable regime! \rightarrow asymptotic arguments for shape of potential do not apply!

Example: KKLT scenario (*Get dS through uplift of supersymmetric AdS vacuum*) [Kachru, Kallosh, Linde, Trivedi '03]

- Consider type IIB on Calabi-Yau orientifold X₃/Z₂ in presence of RR/NS-three form flux F₃, H₃.
- Tadpole cancellation requires: $\frac{\chi(X_4)}{24} = N_{D3} + \frac{1}{2} \int F_3 \wedge H_3$

$$\frac{\chi(X_4)}{24} = \frac{1}{4} \left(N_{O3} + \chi(O7) \right)$$

- Scalar potential given by: $V = e^{K} \left(g^{a\bar{b}} D_{a} W \bar{D}_{\bar{b}} \bar{W} 3 |W|^{2} \right)$
- Supersymmetric vacuum corresponds to solutions to $D_a W = 0$

$$W = \int \Omega_{3} \wedge (F_{3} - \tau H_{3}) + \sum_{\mathbf{k}} \mathscr{A}_{\mathbf{k}}(z^{i}, F_{3}, H_{3}) e^{-2\pi k^{\alpha} T_{\alpha}}$$

Kähler moduli
Complex structure
moduli
Potential at the minimum
given by:

$$V_{0} = -3 \left(e^{K} |W|^{2} \right)$$

$$U_{0} = -3 \left(e^{K} |W|^{2} \right)$$

Max Wiesner

Holography and the KKLT Scenario

Aim: Find dS not in strict weak coupling, but still controllable regime! \rightarrow asymptotic arguments for shape of potential do not apply!

Example: KKLT scenario (*Get dS through uplift of supersymmetric AdS vacuum*) [Kachru, Kallosh, Linde, Trivedi '03]

- Consider type IIB on Calabi-Yau orientifold X₃/ℤ₂ in presence of RR/NS-three form flux F₃, H₃.
- Tadpole cancellation requires: $\frac{\chi(X_4)}{24} = N_{D3} + \frac{1}{2} \int F_3 \wedge H_3$

$$\frac{\chi(X_4)}{24} = \frac{1}{4} \left(N_{O3} + \chi(O7) \right)$$

- Scalar potential given by: $V = e^{K} \left(g^{a\bar{b}} D_{a} W \bar{D}_{\bar{b}} \bar{W} 3 |W|^{2} \right)$
- Supersymmetric vacuum corresponds to solutions to $D_a W = 0$

$$W = \int \Omega_{3} \wedge (F_{3} - \tau H_{3}) + \sum_{\mathbf{k}} \mathscr{A}_{\mathbf{k}}(z^{i}, F_{3}, H_{3}) e^{-2\pi k^{a}T_{a}} \qquad \text{For perturbative control: } e^{-2\pi k^{a}T_{a}} \ll 1$$

$$\rightarrow Solving D_{a}W = 0 \text{ also requires}$$

$$\int \Omega \wedge (F_{3} - \tau H_{3}) \ll 1$$
Potential at the minimum given by:
$$V_{0} = -3 \left(\frac{e^{K} |W|^{2}}{\omega} \right)_{w=0}$$

Max Wiesner

Holography and the KKLT Scenario

F-term equations and attractors

Question: Can the first step of KKLT be completed?

i.e. are there supersymmetric AdS vacua in type IIB/F-theory flux compactifications with exponentially small cosmological constant?

Strategy: Use dual supersymmetric brane picture!

Observation: if we define $|\mathcal{Z}| = e^{K/2} |W|$ the F-term equations $D_a W = 0$ translate to:

 $\partial_a |\mathcal{Z}| = 0$ and cosmological constant is given by $\Lambda = -3 |\mathcal{Z}|^2$

Reminiscent of attractor equations for black

holes

[Ferrara, Kallosh, Strominger '95] cf. also [Kallosh '05]

Recall, e.g. $\frac{1}{2}$ -BPS black holes in type IIB CY compactifications:

• D3-branes on special Lagrangian 3-cycles in CY 3-fold.

Define:
$$|Z| = \frac{\int_{L_3} \Omega_3}{\int \Omega_3 \wedge \overline{\Omega}_3}$$

Attractor: $\partial |Z| = 0$.

Fix moduli at horizon of BH with near-horizon geometry $AdS_2 \times S^2$.

 $|Z|_{crit}$ can be identified with mass of black hole.

F-term equations and attractors

Question: Can the first step of KKLT be completed?

i.e. are there supersymmetric AdS vacua in type IIB/F-theory flux compactifications with exponentially small cosmological constant?

Strategy: Use dual supersymmetric brane picture!

Observation: if we define $|\mathcal{Z}| = e^{K/2} |W|$ the F-term equations $D_a W = 0$ translate to:

 $\partial_a |\mathcal{Z}| = 0$ and cosmological constant is given by $\Lambda = -3 |\mathcal{Z}|^2$

Reminiscent of attractor equations for black holes! [Ferrara, 2

[Ferrara, Kallosh, Strominger '95] cf. also [Kallosh '05]

Recall, e.g. $\frac{1}{2}$ -BPS black holes in type IIB CY compactifications:

• D3-branes on special Lagrangian 3-cycles in CY 3-fold.

Define:
$$|Z| = \left| \frac{\int_{L_3} \Omega_3}{\int \Omega_3 \wedge \bar{\Omega}_3} \right|$$

Attractor: $\partial |Z| = 0$.

Fix moduli at horizon of BH with near-horizon geometry $AdS_2 \times S^2$.

 $|Z|_{crit}$ can be identified with mass of black hole.

F-term equations and attractors

Question: Can the first step of KKLT be completed?

i.e. are there supersymmetric AdS vacua in type IIB/F-theory flux compactifications with exponentially small cosmological constant?

Strategy: Use dual supersymmetric brane picture!

Observation: if we define $|\mathcal{Z}| = e^{K/2} |W|$ the F-term equations $D_a W = 0$ translate to:

 $\partial_a |\mathcal{Z}| = 0$ and cosmological constant is given by $\Lambda = -3 |\mathcal{Z}|^2$

Reminiscent of attractor equations for black

holes!

[Ferrara, Kallosh, Strominger '95] cf. also [Kallosh '05]

Recall, e.g. $\frac{1}{2}$ -BPS black holes in type IIB CY compactifications:

• D3-branes on special Lagrangian 3-cycles in CY 3-fold.

Define:
$$|Z| = \left| \frac{\int_{L_3} \Omega_3}{\int \Omega_3 \wedge \bar{\Omega}_3} \right|$$

Attractor: $\partial |Z| = 0$.

Fix moduli at horizon of BH with near-horizon geometry $AdS_2 \times S^2$.

 $|Z|_{crit}$ can be identified with mass of black hole.

Dualizing the Flux

Inspired by BPS black hole attractor, interpret F-term equations as attractor equations for BPS branes dual to flux.

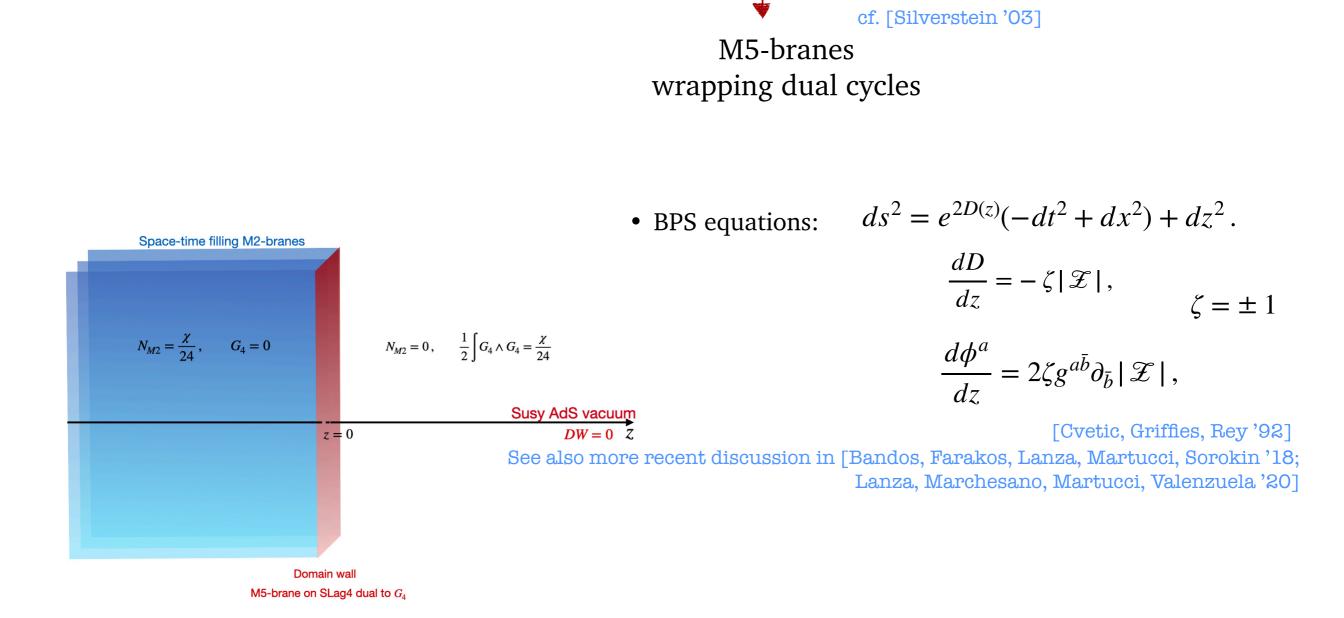
- Here: Consider M-theory version of KKLT, i.e. M-theory on CY fourfold with G_4 -flux
- Want to find KKLT-like AdS_3 vacua \rightarrow statistical arguments for KKLT should equally well apply in this case.
- Similar to D3-brane BH example can dualize the G_4 -flux into branes

cf. [Silverstein '03] M5-branes wrapping dual cycles

Dualizing the Flux

Inspired by BPS black hole attractor, interpret F-term equations as attractor equations for BPS branes dual to flux.

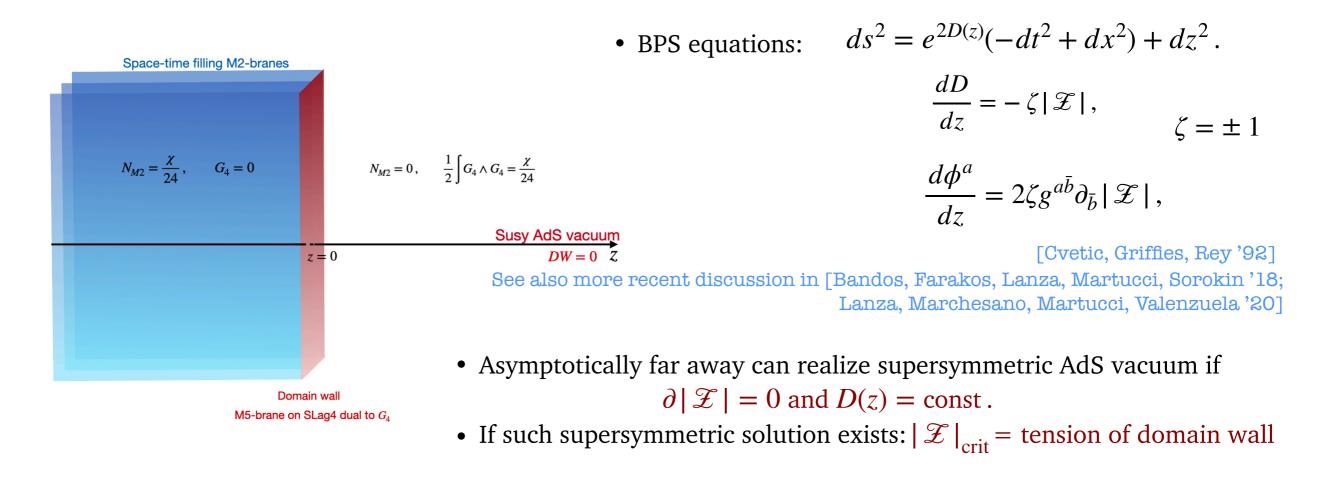
• Similar to D3-brane BH example can dualize the G_4 -flux into branes



Dualizing the Flux

Inspired by BPS black hole attractor, interpret F-term equations as attractor equations for BPS branes dual to flux.

• Similar to D3-brane BH example can dualize the G_4 -flux into branes



- Want supersymmetric AdS: Domain walls need to be 1/2-BPS.
- Only for 1/2 BPS domain wall can interpret $|\mathcal{Z}|_{crit}$ as tension of domain wall.

We are interested in primitive G_4 -fluxes, i.e. $J \wedge G_4 = 0$:

 \rightarrow BPS-domain wall obtained form M5-brane on Special Lagrangian cycles*!

*this is a stronger condition than the usual self-duality condition on G_4

- L_4 is special Lagrangian: $J_4\Big|_{L_4} = 0$, $\operatorname{Im}\left(e^{i\alpha}\Omega_4\right)\Big|_{L_4} = 0$
- Tension of domain wall depends on all moduli (even without non-pert. corrections):

$$\mathcal{Z}_{cl} = e^{(K_{c.s.} + K_{qK})/2} \int_{I} \Omega_{2}$$

• Consequence of non-factorization of moduli space: $\mathcal{M} \neq \mathcal{M}_{c.s.} \times \mathcal{M}_{qK}$

Question: Can the tension of an M5-brane on Slag cycle be arbitrarily small at the attractor point?

- Want supersymmetric AdS: Domain walls need to be 1/2-BPS.
- Only for 1/2 BPS domain wall can interpret $|\mathcal{Z}|_{crit}$ as tension of domain wall.

We are interested in primitive G_4 -fluxes, i.e. $J \wedge G_4 = 0$:

→ BPS-domain wall obtained form M5-brane on Special Lagrangian cycles*!

*this is a stronger condition than the usual self-duality condition on G_4

- L_4 is special Lagrangian: $J_4\Big|_{L_4} = 0$, $\operatorname{Im}(e^{i\alpha}\Omega_4)\Big|_{L_4} = 0$
- Tension of domain wall depends on all moduli (even without non-pert. corrections):

$$\mathcal{Z}_{cl} = e^{(K_{c.s.} + K_{qK})/2} \int_{I} \Omega_{d}$$

• Consequence of non-factorization of moduli space: $\mathcal{M} \neq \mathcal{M}_{c.s.} \times \mathcal{M}_{qK}$

Question: Can the tension of an M5-brane on Slag cycle be arbitrarily small at the attractor point?

- Want supersymmetric AdS: Domain walls need to be 1/2-BPS.
- Only for 1/2 BPS domain wall can interpret $|\mathcal{Z}|_{crit}$ as tension of domain wall.

We are interested in primitive G_4 -fluxes, i.e. $J \wedge G_4 = 0$:

→ BPS-domain wall obtained form M5-brane on Special Lagrangian cycles*!

*this is a stronger condition than the usual self-duality condition on G_4

- L_4 is special Lagrangian: $J_4\Big|_{L_4} = 0$, $\operatorname{Im}\left(e^{i\alpha}\Omega_4\right)\Big|_{L_4} = 0$
- Tension of domain wall depends on all moduli (even without non-pert. corrections):

$$\mathscr{Z}_{\rm cl} = e^{(K_{c.s.} + K_{qK})/2} \int_{L} \Omega_{z}$$

• Consequence of non-factorization of moduli space: $\mathcal{M} \neq \mathcal{M}_{c.s.} \times \mathcal{M}_{qK}$

Question: Can the tension of an M5-brane on Slag cycle be arbitrarily small at the attractor point?

- Want supersymmetric AdS: Domain walls need to be 1/2-BPS.
- Only for 1/2 BPS domain wall can interpret $|\mathcal{Z}|_{crit}$ as tension of domain wall.

We are interested in primitive G_4 -fluxes, i.e. $J \wedge G_4 = 0$:

 \rightarrow BPS-domain wall obtained form M5-brane on Special Lagrangian cycles*!

*this is a stronger condition than the usual self-duality condition on G_4

- L_4 is special Lagrangian: $J_4\Big|_{L_4} = 0$, $\operatorname{Im}\left(e^{i\alpha}\Omega_4\right)\Big|_{L_4} = 0$
- Tension of domain wall depends on all moduli (even without non-pert. corrections):

$$\mathscr{Z}_{\rm cl} = e^{(K_{c.s.} + K_{qK})/2} \int_{L_{t}} \Omega_{t}$$

• Consequence of non-factorization of moduli space: $\mathcal{M} \neq \mathcal{M}_{c.s.} \times \mathcal{M}_{qK}$

Question: Can the tension of an M5-brane on Slag cycle be arbitrarily small at the attractor point?

Max Wiesner

Holography and the KKLT Scenario

Dual Picture

Question: Can the tension of a supersymmetric BPS domain wall be arbitrarily small at the attractor point?

- $|\mathcal{Z}|_{crit.}$ related to the # of massless degrees of freedom on the brane.
- Worldvolume theory on M5-brane on Slag 4-cycle has $\mathcal{N} = (1,1)$ supersymmetry in 2d.
- Massless degrees of freedom correspond e.g. to deformations of 4-cycle.
- Classical geometry: Deformations of Slag cycles is exact moduli space!

• But $\mathcal{M}_{M-\text{theory}} \neq \mathcal{M}_{c.s.} \times \mathcal{M}_{K} \rightarrow \text{deformations can be lifted by corrections!}$

Worldvolume theory on M5-brane in the UV just a QFT, but can flow in the IR to CFT dual to AdS vacuum! $\mathcal{N} = (1,1)$ CFT in I

• We can then identify: $l_{AdS_3} \sim c_{IR} \sim |\mathcal{Z}|_{crit.}^{-1}$

• By c-theorem $c_{\text{UV}} \ge c_{\text{IR}} \rightarrow$ to get a bound it is sufficient to count c_{UV}

Question: For cycles compatible with tadpole cancellation can the central charge be exponentially large?

Max Wiesner

Holography and the KKLT Scenario

Dual Picture

Question: Can the tension of a supersymmetric BPS domain wall be arbitrarily small at the attractor point?

- $|\mathcal{Z}|_{crit.}$ related to the # of massless degrees of freedom on the brane.
- Worldvolume theory on M5-brane on Slag 4-cycle has $\mathcal{N} = (1,1)$ supersymmetry in 2d.
- Massless degrees of freedom correspond e.g. to deformations of 4-cycle.
- Classical geometry: Deformations of Slag cycles is exact moduli space!

 $\mathcal{N} = (1,1)$ QFT in UV

• But $\mathcal{M}_{M-\text{theory}} \neq \mathcal{M}_{c.s.} \times \mathcal{M}_{K} \rightarrow \text{deformations can be lifted by corrections!}$

Worldvolume theory on M5-brane in the UV just a QFT, but can flow in the IR to CFT dual to AdS vacuum! $\mathcal{N} = (1,1)$ CFT in IR

• We can then identify: $l_{AdS_3} \sim c_{IR} \sim |\mathcal{Z}|_{crit.}^{-1}$

• By c-theorem $c_{\text{UV}} \ge c_{\text{IR}} \rightarrow$ to get a bound it is sufficient to count c_{UV}

Question: For cycles compatible with tadpole cancellation can the central charge be exponentially large?

Holography and the KKLT Scenario

Want to find parametric growth of the UV central charge $c_{\rm UV}$ for WV theory on M5-brane on Slag 4-cycle.

Parametric growth: How does c_{UV} behave under rescaling $L_4 \rightarrow NL_4$?

(Are interested in the large N regime where statistical arguments for flux compactifications should

> apply) [Bousso, Polchinski '00; Douglas '03; Denef, Douglas '04]

M5-brane on Slag $L_4 \subset CY_4$ What are the d.o.f. from the reduction of M5-brane action?

- 6d tensor multiplet yields $b_2^+(L_4)$ right-moving and $b_2^-(L_4)$ left-moving scalars.
- Tangent space of Slag deformations of *L*₄:

$$T_{L_4}(\mathcal{M}) = H^0(L_4, \mathcal{N}) = H^0(L_4, T^*L_4)$$

 $\rightarrow \dim_{\mathbb{R}} \mathscr{M} = b_1(L_4)$

(Use $\mathcal{N} = T^*L_4$ for Slag cycles)

Want to find parametric growth of the UV central charge $c_{\rm UV}$ for WV theory on M5-brane on Slag 4-cycle.

Parametric growth: How does c_{UV} behave under rescaling $L_4 \rightarrow NL_4$?

(Are interested in the large N regime where statistical arguments for flux compactifications should apply) [Bousso, Polchinski '00; Douglas '03; Denef, Douglas '04]

M5-brane on Slag $L_4 \subset CY_4$ What are the d.o.f. from the reduction of M5-brane action?

- 6d tensor multiplet yields $b_2^+(L_4)$ right-moving and $b_2^-(L_4)$ left-moving scalars.
- Tangent space of Slag deformations of L_4 :

M5-brane on Slag $L_4 \subset CY_4$

What are the d.o.f. from the reduction of M5-brane action?

•
$$N_L = 1 + b_2^- + b_1$$
 $N_R = 1 + b_2^+ + b_1$

• Central charge:

$$c_{\rm UV} = \frac{3}{2} \left(2 + b_2^+ + b_2^- + 2b_1 \right) = \frac{3}{2} (\chi(L_4) + 4b_1)$$

• For Slag cycle have: $\chi(L_4) = L_4 \cdot L_4$

$$\rightarrow c_{\rm UV} = \frac{3}{2} \left(L_4 \cdot L_4 + 4b_1 \right)$$

- Expect c_{UV} to grow like: $c_{\text{UV}}(NL_4) \sim N^2 c_{\text{UV}}(L_4)$
- $b_1(L_4)$ should also not grow faster than $aL_4 \cdot L_4$

(In orientifold limit can support this through black hole arguments)

ee [Lüst, Vafa, MW, Xu '22]

- From RG flow: $c_{\text{IR}} \leq c_{\text{UV}} \lesssim \beta \chi(L_4)$
- Tadpole cancellation:

$$\frac{\chi(X_4)}{24} = N_{D3} + \frac{1}{2}L_4 \cdot L_4$$

Central charge of M5-brane on Slag 4-cycle bounded by the Tadpole!

Max Wiesner

Holography and the KKLT Scenario

M5-brane on Slag $L_4 \subset CY_4$

What are the d.o.f. from the reduction of M5-brane action?

•
$$N_L = 1 + b_2^- + b_1$$
 $N_R = 1 + b_2^+ + b_1$

• Central charge:

$$c_{\rm UV} = \frac{3}{2} \left(2 + b_2^+ + b_2^- + 2b_1 \right) = \frac{3}{2} (\chi(L_4) + 4b_1)$$

• For Slag cycle have: $\chi(L_4) = L_4 \cdot L_4$

$$\rightarrow c_{\rm UV} = \frac{3}{2} \left(L_4 \cdot L_4 + 4b_1 \right)$$

- Expect c_{UV} to grow like: $c_{\text{UV}}(NL_4) \sim N^2 c_{\text{UV}}(L_4)$
- $b_1(L_4)$ should also not grow faster than aL_4 . L_4

(In orientifold limit can support this through black hole arguments)

see [Lüst, Vafa, MW, Xu '22]

- From RG flow: $c_{\text{IR}} \leq c_{\text{UV}} \lesssim \beta \chi(L_4)$
- Tadpole cancellation:

$$\frac{\chi(X_4)}{24} = N_{D3} + \frac{1}{2}L_4 \cdot L_4$$

Central charge of M5-brane on Slag 4-cycle bounded by the Tadpole!

Max Wiesner

Holography and the KKLT Scenario

M5-brane on Slag $L_4 \subset CY_4$

What are the d.o.f. from the reduction of M5-brane action?

•
$$N_L = 1 + b_2^- + b_1$$
 $N_R = 1 + b_2^+ + b_1$

• Central charge:

$$c_{\rm UV} = \frac{3}{2} \left(2 + b_2^+ + b_2^- + 2b_1 \right) = \frac{3}{2} (\chi(L_4) + 4b_1)$$

• For Slag cycle have: $\chi(L_4) = L_4 \cdot L_4$

$$\rightarrow c_{\rm UV} = \frac{3}{2} \left(L_4 \cdot L_4 + 4b_1 \right)$$

- Expect c_{UV} to grow like: $c_{\text{UV}}(NL_4) \sim N^2 c_{\text{UV}}(L_4)$
- $b_1(L_4)$ should also not grow faster than $aL_4 \cdot L_4$

(In orientifold limit can support this through black hole arguments)

see [Lüst, Vafa, MW, Xu '22]

- From RG flow: $c_{\text{IR}} \leq c_{\text{UV}} \lesssim \beta \chi(L_4)$
- Tadpole cancellation:

$$\frac{\chi(X_4)}{24} = N_{D3} + \frac{1}{2}L_4 \cdot L_4$$

Central charge of M5-brane on Slag 4-cycle bounded by the Tadpole!

Max Wiesner

Holography and the KKLT Scenario

Bounding *l*_{AdS}

UV central charge is parametrically bounded by $c_{UV} \le \beta \chi(L_4)$

- By tadpole cancellation $\chi(L_4)$ itself is bounded by $\chi(X_4)/24$.
- IR central charge and AdS radius related by $c_{IR} \sim l_{AdS_d}^{d-2}$.
- For *AdS*₃ vacua find:

$$l_{AdS_3} \le \frac{\chi(X_4)}{24}$$

• Largest known Euler characteristic for CY four-fold 1 820 448 $\rightarrow l_{AdS_3} \lesssim O(10^5)$ [Klemm, Lian, Roan, Yau '97; Taylor, Wang '15]

Question: Are these AdS vacua indeed weakly coupled as in the KKLT scenario?

Consider the species scale $\hat{=}$ scale at which gravity becomes strongly coupled in the presence of *N* light particle species. [Dvali '07]

$$\Lambda_{\text{species}} = \frac{M_{\text{pl}}}{N^{1/(d-2)}} \qquad \chi(X_4) = 6(8 + \frac{h^{3,1} + h^{1,1}}{N} - h^{2,1}), \text{ such that parametrically } N \gtrsim \chi(X_4)$$
$$\implies \frac{\Lambda_{\text{species}}}{M_{\text{pl}}} \sim \frac{1}{\chi(X_4)}$$

Holography and the KKLT Scenario

Bounding l_{AdS}

UV central charge is parametrically bounded by $c_{UV} \leq \beta \chi(L_4)$

- By tadpole cancellation $\chi(L_4)$ itself is bounded by $\chi(X_4)/24$.
- IR central charge and AdS radius related by $c_{IR} \sim l_{AdS_d}^{d-2}$.
- For *AdS*₃ vacua find:

$$l_{AdS_3} \le \frac{\chi(X_4)}{24}$$

• Largest known Euler characteristic for CY four-fold 1 820 448 $\rightarrow l_{AdS_3} \lesssim \mathcal{O}(10^5)$ [Klemm, Lian, Roan, Yau '97; Taylor, Wang '15]

<u>Question</u>: Are these AdS vacua indeed weakly coupled as in the KKLT scenario?

Consider the species scale $\hat{=}$ scale at which gravity becomes strongly coupled in the presence of N light particle species. [Dvali '07]

$$\Lambda_{\text{species}} = \frac{M_{\text{pl}}}{N^{1/(d-2)}} \qquad \chi(X_4) = 6(8 + h^{3,1} + h^{1,1} - h^{2,1}), \text{ such that parametrically } N \gtrsim \chi(X_4)$$
$$\implies \frac{\Lambda_{\text{species}}}{M_{\text{pl}}} \sim \frac{1}{\chi(X_4)}$$
Max Wiesner Holography and the KKLT Scenario String Pheno 2022

String Pheno 2022

07/05/2022

Bounding *l*_{AdS}

UV central charge is parametrically bounded by $c_{UV} \le \beta \chi(L_4)$

- By tadpole cancellation $\chi(L_4)$ itself is bounded by $\chi(X_4)/24$.
- IR central charge and AdS radius related by $c_{IR} \sim l_{AdS_d}^{d-2}$.
- For *AdS*₃ vacua find:

$$l_{AdS_3} \le \frac{\chi(X_4)}{24}$$

• Largest known Euler characteristic for CY four-fold 1 820 448 $\rightarrow l_{AdS_3} \leq O(10^5)$ [Klemm, Lian, Roan, Yau '97; Taylor, Wang '15]

Question: Are these AdS vacua indeed weakly coupled as in the KKLT scenario?

Consider the species scale $\hat{=}$ scale at which gravity becomes strongly coupled in the presence of *N* light particle species. [Dvali '07]

$$\Lambda_{\text{species}} = \frac{M_{\text{pl}}}{N^{1/(d-2)}} \qquad \chi(X_4) = 6(8 + \underbrace{h^{3,1} + h^{1,1}}_{\sim N} - h^{2,1}), \text{ such that parametrically } N \gtrsim \chi(X_4) \\ \implies \frac{\Lambda_{\text{species}}}{M_{\text{pl}}} \sim \frac{1}{\chi(X_4)}$$

Holography and the KKLT Scenario

AdS scale vs. species scale

Compare species and AdS scale (here 3d):

AdS scale is at or below the species scale! \rightarrow AdS is necessarily strongly coupled. \rightarrow Cannot trust even the vacua with small Λ .

Same also works in 4d, since species scale and AdS scale have the same dimension dependence:

Holography and the KKLT Scenario

AdS scale vs. species scale

Compare species and AdS scale (here 3d):

AdS scale is at or below the species scale! \rightarrow AdS is necessarily strongly coupled. \rightarrow Cannot trust even the vacua with small Λ .

Same also works in 4d, since species scale and AdS scale have the same dimension dependence:

From this perspective: KKLT-like SUSY AdS vacua should not be realizable!!

Max Wiesner

Holography and the KKLT Scenario

Conclusions

- Considered the first step of KKLT scenario (supersymmetric AdS vacuum from flux compactification) from a dual brane perspective.
- Used "conventional" holography and replaced flux by 5-branes.

cf. [Silverstein '03]

• Supersymmetry equations DW = 0 identified as attractor equations

→ supersymmetric vacuum requires supersymmetric brane! cf. [Kallosh '05; Kounnas, Lüst, Petropoulos, Tsimpis '07]

• For simplicity: M-theory analogue of KKLT \rightarrow supersymmetric vacua dual to branes on on Slag cycles!

Stronger condition than self-duality of G₄-flux! Not taken into account in e.g. [Demirtas, Kim, McAllister, Moritz, (Rios-Tas

- AdS scale identified with tension of brane $|\mathcal{Z}|$ at attractor point. \rightarrow related to IR degrees of freedom on brane worldvolume.
- UV central charge bounded as: $c_{UV} \lesssim \frac{\chi(X_4)}{24} \rightarrow AdS$ cosmological constant bounded by M2/D3-brane tadpole!

i.e. no large N limit for KKLT AdS vacua!

• AdS scale in fact of order of the species scale: $\Lambda_{AdS} \gtrsim \Lambda_{species}$.

Holography and the KKLT Scenario

Conclusions

- Considered the first step of KKLT scenario (supersymmetric AdS vacuum from flux compactification) from a dual brane perspective.
- Used "conventional" holography and replaced flux by 5-branes.
- Supersymmetry equations DW = 0 identified as attractor equations \rightarrow supersymmetric vacuum requires supersymmetric brane! cf. [Kallosh '05;

Kounnas, Lüst, Petropoulos, Tsimpis '07]

• For simplicity: M-theory analogue of KKLT \rightarrow supersymmetric vacua dual to branes on on Slag cycles!

Stronger condition than self-duality of G₄-flux! Not taken into account in e.g. [Demirtas, Kim, McAllister, Moritz, (Rios-Tascon) '20,'21]

- AdS scale identified with tension of brane |𝔅| at attractor point.
 → related to IR degrees of freedom on brane worldvolume.
- UV central charge bounded as: $c_{UV} \lesssim \frac{\chi(X_4)}{24} \rightarrow \text{AdS cosmological constant bounded by}$ $\frac{M2/D3\text{-brane tadpole!}}{i.e. \ no \ large \ N \ limit \ for \ KKLT \ AdS \ vacua!}$
- AdS scale in fact of order of the species scale: $\Lambda_{AdS} \gtrsim \Lambda_{species}$.

Holography and the KKLT Scenario

Thank you!!

Max Wiesner

Holography and the KKLT Scenario